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Abstract 

Class prediction using -omics data is playing an increasing role in toxicogenomics, 

diagnosis/prognosis and risk assessment. Omics data are usually noisy and represented by 

relatively few samples and a very large number of predictor variables (e.g., genes of 

DNA microarray data or m/z peaks of mass spectrometry data). These characteristics 

manifest the importance of assessing potential random correlation and overfitting of noise 

for a classification model based on -omics data. We present a novel classification 

method, Decision Forest (DF), for class prediction using -omics data. DF combines the 

results of multiple heterogeneous but comparable Decision Tree (DT) models to produce 

a consensus prediction. The method is less prone to overfitting of noise and chance 

correlation. A DF model was developed to predict presence of prostate cancer using a 

proteomic dataset generated from surface enhanced laser deposition/ionization time-of-

flight mass spectrometry (SELDI-TOF MS). The degree of chance correlation and 

prediction confidence of the model was rigorously assessed by using an extensive cross-

validation and randomization testing. Comparison of model prediction with imposed 

random correlation demonstrated biological relevance of the model and the reduction of 

overfitting in DF. Furthermore, two confidence levels (high and low confidences) ) were 

assigned to each prediction, where the majority of misclassifications were associated with 

the low confidence region. For the high confidence prediction, the model achieved 99.2% 

sensitivity and 98.2% specificity. The model also identified a list of significant peaks that 

could be useful for biomarker identification. DF should be equally applicable to other -

omics data, such as gene expression data or metabonomic data. The DF algorithm is 

available upon request.  
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Introduction  

Recent technological advances in the fields of -omics, including toxicogenomics, 

hold great promise for the understanding of the molecular basis of health and disease, and 

toxicity. Prospective further advances could significantly enhance our capability to study 

toxicology and improve clinical protocols for early detection of various types of cancer, 

disease states, and treatment outcomes. Classification methods, because of their power to 

unravel patterns in biologically complex data, have become one of the most important 

bioinformatics approaches investigated for use with -omics data. Classification uses 

supervised learning techniques (Tong et al. 2003b) to fit the samples into the predefined 

categories based on patterns of -omics profiles or predictor variables (e.g., gene 

expressions in DNA microarray). The fitted model is then validated using either a cross-

validation method or an external test set.  Once validated, the model could be used for 

prediction of unknown samples. 

A number of classification methods have been applied to microarray gene 

expression data (Ben-Dor et al. 2000; Simon et al. 2003; Slonim 2002), including 

Artificial Neural Networks (Khan et al. 2001), K-Nearest Neighbor (Olshen and Jain 

2002), Decision Tree (DT) (Zhang et al. 2001) and Support Vector Machines (SVMs) 

(Brown et al. 2000). Some of the same methods have similarly been applied to proteomic 

data generated from surface enhanced laser deposition/ionization time-of-flight mass 

spectrometry (SELDI-TOF MS) for molecular diagnostics (Adam et al. 2002; Ball et al. 

2002). For exemple, Petricoin et al. (Petricoin et al. 2002a; Petricoin et al. 2002b) 

developed classification models for early detection of ovarian and prostate cancers based 

on SELDI-TOF data using a genetic algorithm-based SVM.  
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Omics data presents challenges for most classification methods because: 1) the 

number of predictor variables normally far exceeds the sample size and 2) most data is 

unfortunately very noisy. Consequently, optimizing a classification model inherently 

risks overfitting the noise, a result that is difficult to overcome for most classification 

methods (Slonim 2002). Furthermore, many existing classification methods require 

predetermination of a set of predictor variables, thereby introducing additional 

complexity and bias that could adversely affect both model fitting and validation 

(Ambroise and McLachlan 2002).   

In this article, a novel classification method, Decision Forest (DF), is proposed for 

developing classification models using -omics data. A DF model is developed by 

combining multiple distinct but comparable DT models to achieve a more robust and 

better prediction (Tong et al. 2003a). DF does not require predetermination of predictor 

variables prior to model development and is less prone to overfitting of noise. Developing 

a statistically sound model that fits the data is straightforward with most classification 

methods, but assuring that the model can accurately classify unknown samples with a 

known degree of certainty poses a significant challenge. In DF, an extensive cross-

validation and randomization testing procedure were implemented, which provides two 

critical measures to assess a fitted model’s ability to predict unknown samples, the 

confidence level of predictions and the degree of chance correlation. DF is demonstrated 

in an application to distinguish prostate cancer samples from normal samples based on a 

SELDI-TOF MS dataset. The results indicate that the reported DF model could be useful 

for early detection of prostate cancer. 
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Material and Methods 

Proteomics dataset 

A proteomic dataset reported by Adam et al. (Adam et al. 2002) is used in this 

study. The dataset consists of SELDI-TOF MS spectra for 326 samples, which is 

generated using the IMAC-3 chip. Of 326 serum samples used, 167 samples are from the 

prostate cancer (PCA) patients, 77 from the patients with benign prostatic hyperplasia 

(BPH), and 82 from healthy individuals. The samples are subsequently divided into two 

classes for this study, cancer (167 PCA samples) versus noncancer (159 samples 

including both BPH and healthy individuals) (Qu et al. 2002). Each sample is 

characterized by 779 peaks of a spectrum. These peaks are determined in the mass range 

of 2,000-40,000 Da and provided by the original authors (Adam et al. 2002) for this 

study. All of these peaks are used as predictor variables without pre-selection to develop 

the DF model. 

 

Decision Tree 

A DT model is developed using a variant of the Classification and Regression 

Tree (CART) method (Breiman et al. 1995), which consists of two steps, tree 

construction and tree pruning (Clark and Pregibon 1997). In the tree construction process, 

the algorithm identifies the best predictor variables that divide the sample in the parent 

node into two child nodes. The split maximizes the homogeneity of the sample 

population in each child node (e.g. one node is dominated by the cancer samples while 

the other is populated with the noncancer samples). Then, the child nodes become parent 

nodes for further splits and splitting continues until samples in each node are either in one 
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classification category or can not be split further to improve the quality of the DT model. 

To avoid overfitting the training data, the tree is then cut down to a desired size using tree 

cost-complexity pruning (Clark and Pregibon 1997). In the end of the process, each 

terminal node contains a certain percentage of cancer samples. This percentage specifies 

the probability of a sample to be the cancer sample. In this study, the cutoff 0.5 is used to 

distinguish cancer samples from non-cancer samples. If a terminal node contains the 

percentage of cancer sample (P) larger than 50% (i.e., P>0.5), all the samples in this 

terminal are designated as cancer samples and P is the probability value assigned to the 

entire sample in this terminal node. Similarly, samples are non-cancer if the probability is 

less than 0.5. 

 

Decision Forest 

DF is a consensus modeling technique, where the results of multiple DT models 

are combined to produce a more accurate prediction than any of the individual 

independent DT models. Since combining several identical DT models produces no gain, 

the rationale behind DF is to develop multiple DT models that are heterogeneous with 

comparable quality. “Heterogeneity” emphasizes each DT model’s unique contribution to 

the combined prediction, which is accomplished by developing each DT model based on 

a distinct set of predictor variables. “Comparable quality” ensures each DT model’s equal 

weight in combining prediction, which requires each DT model having similar accuracy 

of prediction.  Thus, the development of a DF model consists of 3 simple steps (Tong et 

al. 2003a): 1) develop a DT model; 2) develop the next DT model based on only the 

predictor variables that are not used in the previous DT model(s); and 3) repeat steps 1 
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and 2 until no additional DT models can be developed. In this process, the 

misclassification rate for each DT model is controlled at a fixed level (3-5%) to ensure 

the comparable quality of individual DT models. The same classification call in DT is 

used for determining a sample’s classification based on the mean probability value of all 

DT models used in DF. 

 

Randomization Test for Chance Correlation 

Because proteomic data usually contains a large number of predictor variables 

with a relatively small number of samples, it is possible that the patterns identified by a 

classification model could be simply due to chance. Thus, we used a randomization 

testing to assess the degree of chance correlation. In this method, the predefined 

classification of the samples was randomly scrambled to generate 2,000 pseudo datasets 

(Good 1994). The DF models were developed for each pseudo dataset, and the results 

were then compared with the DF model from the real dataset to determine the degree of 

chance correlation. 

 

Model Validation 

A common approach for assessing the predictivity of a classification model is to 

randomly split the available samples into a training set and a test set. The predictivity of a 

fitted model using all the samples is estimated based on the prediction accuracy for the 

test set. Arguably, the cross-validation method could be considered as an extension of 

this external validation procedure, and might offer an unbiased way to assess the 

predictivity of a model from a statistical point of view (Hawkins et al. 2003). In this 
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procedure, a fraction of samples in the dataset are excluded, and then predicted by the 

model produced using the remaining samples. When each sample is left out one at a time, 

and the process repeated for each sample, this is known as leave-one-out cross-validation 

(LOO). If the dataset is randomly divided into N groups with approximately equal numbers 

of samples and the process is carried out for each group, the procedure is called leave-N-out 

cross-validation (LNO). Since the LOO gives a minimal perturbation to the dataset and 

therefore might not detect overfitting of a model, the leave-10-out cross-validation (L10O) 

is commonly used for classification models. 

 It is important to point out that the LNO results vary for each run because the 

partition of the dataset is changing in a random manner (except for the LOO procedure). 

The variation increases as the number of left-out samples increases (i.e., N decreases with 

N>1). Care must be taken when interpreting the results derived from only one pass through 

a LNO process, which could lead to a conclusion that might not represent the true 

predictivity of the fitted model due to chance. Rather, the mean of many passes through the 

LNO process should well approximate the predictivity of the fitted model. In this study, an 

extensive L10O procedure was implemented in DF, where the L10O process was repeated 

2,000 times using randomly divided datasets in each run. The choice of 2000 runs is 

based on our previous experience, where a reliable statistics can be reached (Tong et al. 

2003a). In this validation process, a total of 20,000 pairs of training and test sets were 

generated and each sample was predicted by 2,000 different models. The results derived 

from this process provide an unbiased statistic for evaluating the predictivity of a fitted 

model. 
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Results 

DF was applied to the proteomic dataset for distinguishing cancer from 

noncancer. The fitted DF model for the dataset contains 4 DT models, each of them 

having the comparable misclassifications ranging from 12 to 14 (i.e., 3.7-4.3% error rate) 

(Table 1). The misclassification is significantly reduced as the number of DT models to 

be combined increases to form a DF model (Figure 1). The four-tree DF model gave 

100% classification accuracy. However, it is important to note that a statistically sound 

fitted model provides limited indication of whether the identified pattern is biologically 

relevant or is solely due to chance. Neither does such a fitting result provide validation of 

the model’s capability for predicting unknown samples that were not included in the 

training set used for model development. It is important to carry out a rigorous validation 

procedure to determine the fitted model with respect to the degree of chance correlation 

and the level of confidence for predicting unknown samples.  

 

Assessment of chance correlation  

We compared the predictive accuracy for the left-out samples in the 2000 L10O 

runs of the real dataset (total of 20,000 pairs of training and test sets) with those derived 

from the L10O run for each of the 2000 pseudo datasets (total of 20,000 pairs of training 

and test sets). The distributions of the prediction accuracy of every pair for both real and 

pseudo datasets are plotted in Figure 2. The distribution of prediction accuracy of the real 

dataset centers around 95% while the pseudo datasets are near 50%. The real dataset has 

a much narrower distribution compared to the pseudo datasets, indicating that the training 

models generated from the L10O procedure for the real dataset give consistent and high 
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prediction accuracy with their corresponding test sets. In contrast, the prediction results 

of each pair of training and test sets in the L10O process for the pseudo datasets varied 

widely, implying a large variability of signal/noise ratio among these training models. 

Importantly, there is no overlap between two distributions, indicating that a statistically 

and biologically relevant DF model could be developed using the real dataset.  

 

Assessment of prediction confidence  

DF assigned a probability value for each prediction, where samples with the 

probability value equal or larger than 0.5 were designated as a cancer samples while 

others were designated as normal samples. Figure 3 provides two sets of information 

derived from the 2000 L10O runs over ten equal probability intervals between 0 and 1: 1) 

the number of left-out samples predicted in each bin; and 2) the misclassification rate in 

each bin. Analysis shows that the 0.7 – 1.0 interval has a concordance of 99.2% for the 

cancer samples (0.8% false positives) while the 0.0 – 0.3 interval has a concordance of 

98.2% for the non-cancer sample (1.8% false negatives). These two probability ranges 

accounted for 79.7% of all left-out samples. The vast majority of misclassifications occur 

in the 0.3 – 0.7 probability range where the average prediction accuracy was only 78.9% 

but which, fortunately, only accounted for 20.3% of total of left-out samples. Therefore, 

we defined both the predicted probability ranges of 0.0-0.3 and 0.7-1.0 as the high 

confidence (HC) region, whereas the predicted probability range of 0.3-0.7 was 

considered as the low confidence (LC) region. 

 

Comparison of DF with DT 



 14

Table 2 summarizes the statistical results of the 2000 L10O runs for both DF and 

DT. Overall, the DF model increases prediction accuracy by about 5% compared to the 

DT model, from 89.4 to 94.7%. In the HC region, the DF model increases prediction 

accuracy compared to the DT model by 8% from 90.7% to 98.7%, while 15% from 

63.8% to 78.9% in the LC region. 

 

Biomarker identification 

In addition to development a predictive model for proteomic diagnostics, 

identification of potential biomarkers is another important use of the SELDI-TOF MS 

technology (Diamandis 2003). Each DT model in DF determines a sample’s classification 

through a series of rules based on selection of predictor variables. Thus, it is expected 

that the DF-selected variables could be useful as a starting point for biomarker 

identification.  

There were two lists of model-selected variables derived from DF, one used in 

fitting (the fitting-variable list) (Table 1) and the other used by at least one of the models 

in the 2000 L10O process (the L10O-variable list). The L10O-variable list contained 323 

unique variables, which actually included all variables in the fitting-variable list. Given 

that the sample population is different among the models in the 2000 L10O runs, the 

number of models selecting a particular variable should tend to increase in direct 

proportion to the biological relevance of the variable. There were 46 variables that were 

selected more than 10,000 times in the 2000 L10O process (Table 3), including all 12 m/z 

peaks identified by Qu et al. using the Boosted Decision Stump Feature Selection based 

on a slightly larger dataset (Qu et al. 2002). The two-group t-test results indicated that 32 
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of 46 high-frequency variables have p-value less than 0.001 (Table 3). Selection of 23 

variables from Table 3 that were used in both fitting and L10O with p<0.001 appears a 

reasonable approach to choosing a set of proteins for biomarker identification. 
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Discussion 

We developed a classification model for early detection of prostate cancer based 

on SELDI-TOF MS data using DF. DF is an ensemble method, where each prediction is a 

mean value of all the DT models combined to construct the DF model. The idea of 

combining multiple DT models implicitly assumes that a single DT model could not 

completely represent important functional relationships between predictor variables (m/z 

peaks in this study) and the associated outcome variables (prostate cancer in this study), 

and thus different DT models are able to capture different aspects of the relationship for 

prediction. Given a certain degree of noise always present in -omics data, optimizing a 

DT model inherently risks overfitting the noise. DF minimizes overfitting by maximizing 

the difference among individual DT models. The difference is achieved by constructing 

each individual DT model using a distinct set of predictor variables. Noise cancellation 

and corresponding signal enhancement is apparent when comparing the results from DF 

and DT. DF outperforms DT in all statistical measures in the 2000 L10O runs. Whether 

DT performs better than other similar classification techniques depends on the 

application domain and the effectiveness of the particular implementation. However, Lim 

and Loh (Lim and Loh 1999) compared 22 DT methods with nine statistical algorithms 

and two ANN approaches across 32 datasets and found no statistical difference among 

the methods evaluated. Thus, the better performance of DF than DT implies that the 

unique ensemble technique embedded in DF could also be superior to some other 

classification techniques for class prediction using -omics data. 

Combining multiple DT models to produce a single model has been investigated 

for many years (Bunn 1987; Bunn 1988; Clemen 1989; Zhang et al. 2003). Evaluating 
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different ways for developing individual DT models to be combined has been a major 

focus, which have all been reported to improve ensemble predictive accuracy. One 

approach is to grow individual DT models based on different portions of samples 

randomly selected from the training set using resampling techniques. However, 

resampling using a substantial portion of samples (e.g., 90%) tends to result in individual 

DT models that are highly correlated, whereas using a less substantial portion of samples 

(e.g., 70%) tends to result in individual DT models of lower quality. Either high 

correlated or lower quality individual DT models can reduce the combining benefit that 

might otherwise be realized. The individual DT models can also be generated using more 

robust statistical resampling approaches, such as Bagging (Breiman 1996) and Boosting 

(Freund and Schapire 1996). However, it is understood that Boosting that uses a function 

of performance to weight incorrect predictions is inherently at risk of overfitting the noise 

associated with the data, which could result in a worse prediction from an ensemble 

model (Freund and Schapire 1996).  Another approach to choosing an ensemble of DT 

models centers on random selection of predictor variables (Amit and Geman 1997). One 

popular algorithm, random forests, has been demonstrated to be more robust than a 

Boosting method (Breiman 1999). However, in an example of classification of naïve in 

vitro drug treatment sample based on gene expression data, Gunter et al. (Gunther et al. 

2003) showed reduced prediction accuracy of random forests (83.3%) compared to DT 

(88.9%).  

It is important to note that the aforementioned techniques rely on random 

selection of either samples or predictor variables to generate individual DT models. In 

each repeat, the individual DT models of the ensemble are different; thus, the biological 
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interpretation of the ensemble is not straightforward. Furthermore, these methods need to 

grow a large number of individual DT models (>400), and could be computationally 

expensive. In contrast, the difference in individual DT models is maximized in DF such 

that a best ensemble is usually realized by combining only a few DT models (i.e., 4 or 5). 

Importantly, because DF is reproducible, the variable relationships are constant in their 

interpretability for biological relevance.    

Omics data such as we stress in this paper normally has a limited number of samples 

and a large number of predictor variables. Furthermore, the noise associating with both 

categorical dependent variables and predictor variables are usually unknown. It is 

consequently imperative to verify that the fitted model is not a chance correlation. To assess 

the degree of chance correlation of the prostate cancer model, we computed a null 

distribution of prediction with 2000 L10O runs based on 2000 pseudo datasets derived from 

a randomization test. The null hypothesis was tested by comparing the null distribution with 

the DF predictions in 2000 L10O runs using the actual training dataset. The degree of 

chance correlation in the predictive model can be estimated from the overlap of the two 

distributions (Figure 2). Generally speaking, a dataset with an unbalanced sample 

population, small sample size and/or low signal/noise ratio would tend to produce a model 

with distribution overlapping the null distribution. For the prostate cancer model, the 

distributions are spaced far apart with no overlap, indicating that the model is biologically 

relevant. 

A model fitted to -omics data has minimal utility unless it can be generalized to 

predict unknown samples. The ability to generalize the model is an essential requirement 

for diagnostics and prognostics in medical settings and/or risk assessment in regulation. 
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Commonly, test samples are used to verify the performance of a fitted model. Such 

external validation, while providing a sense of real-world application, must incorporate 

assurance that samples set aside for validation are representative. Setting aside only a small 

number of samples might not provide the ability to fully assess the predictivity of a fitted 

model, which, in turn, could result in the loss of valuable additional data that might improve 

the model. Besides, one rarely enjoys the luxury of setting aside a sufficient number of 

samples for use in external validation in -omics research since in most cases datasets contain 

barely enough samples to create a statistically robust model in the first place. There fore, an 

extensive L10O procedure is embedded in DF that can provide an unbiased and rigorous 

way to assess the fitted model’s predictivity within the available samples’ domain, without 

the loss of samples set aside for a test set. 

A model’s ability to predict unknown sample is directly dependent on the nature of 

the training set. In other words, predictive accuracy for different unknown samples varies 

according to how well the training set represents the given samples. Therefore, it is critical 

to be able to estimate the degree of confidence for each prediction, which could be difficult 

to derive from the external validation. In DF, the information derived from the extensive 

L10O process permits assessment of the confidence level for each prediction. For the 

prostate cancer model, the confidence level for predicting unknown samples was assessed 

based on the distribution of accuracy over the prediction probability range for the left-out 

samples in the 2000 L10O runs. We found that the sensitivity and specificity of the model 

were 99.2% and 98.2% in the HC region, respectively, with an overall concordance of 

98.7%. In contrast, a much lower prediction confidence of 78.9% was obtained in the LC 

region, indicating that these predictions need to be further verified by additional methods. 
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Generally, the number of samples within the HC region compared to the LC region 

depends on the signal to noise ratio in the dataset. For noisy data, more unknown samples 

will be predicted in the LC region, and could be as high as 40-50% (results not shown). 

For the prostate cancer dataset, some 80% of the left-out samples predicted in the 2000 

L10O runs were in the HC region, indicating that the dataset has a high signal/noise ratio.   

A number of classification methods reported in the literature require selection of 

the relevant or informative predictor variables before modeling is actually performed. 

This is necessary because the method could be susceptible to noise without this 

procedure, and the computational cost is prohibitive for iterative variable selection during 

cross-validation. While these are otherwise effective methods, they could produce what is 

called “selection bias” (Simon et al. 2003). Selection bias occurs when the model’s 

predictive performance is assessed using cross-validation where only the pre-selected 

variables are included. Because of selection bias, cross-validation could significantly 

overstate prediction accuracy (Ambroise and McLachlan 2002), and external validation 

becomes mandatory to assess a model’s predictivity. In contrast, model development and 

variable selection are integral in DF. DF avoids the selection bias during cross-validation 

because the model is developed at each repeat by selecting the variables from the entire 

set of predictor variables. The cross-validation thereby provides a realistic assessment of 

the predictivity of a fitted model. Given the trend of ever decreasing computation 

expense, carrying-out exhaustive cross-validation is increasingly attractive, particularly 

when scarce sample data can be used for training as opposed to external testing. Of 

course, external validation is still strongly recommended when the amount of data 
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suffices, in which case the cross-validation process will still enhance the rigor of the 

validation. 
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Figure Legend 

Figure 1: Plot of misclassifications versus the number of DT models to be combined in 

DF.  

Figure 2: Prediction distribution in the 2000 L10O process: (A) real dataset and (B) 2000 

pseudo dataset generated from a randomization test. 

Figure 3: Distribution of true/false predictions for the left-out samples over 10 equal 

probability bins in the 2000 L10O process.   
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Table 1. Summary of the four DT models combined for developing the DF model  
 
 DT model 1 DT model 2 DT model 3 DT model 4 
-------------------------------------------------------------------------------------------------------- 
Number of misclassifications 12 13 14 14 
-------------------------------------------------------------------------------------------------------- 
Variables (m/z peaks) 9,656 8,067 6,542 7,692 
used in each DT model 8,446 8,356 7,934 6,756 
 5,074 5,457 7,195 9,593 
 6,797 2,144 4,497 9,456 
 8,291 7,885 4,080 5,978 
 9,720 7,024 6,199 3,780 
 3,486 7,771 7,481 2,794 
 4,191 3,897 5,586 7,844 
 4,653 4,757 6,099 5,113 
  6,890 7,070 28,143 
  2,014 24,400 2,982 
  9,149 2,887 6,443 
   7,054 7,820 
   4,475 4,580 
   4,537  
   7,409  
   7,054  
--------------------------------------------------------------------------------------------------------- 
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Table 2. Comparison of statistics between DF and DT in prediction of the left-out 
samples in the 2000 L10O runs 
---------------------------------------------------------------------------------------------------------- 
Prediction accuracy  DF model   DT model 
----------------------------------------------------------------------------------------------------------- 
Overall accuracy  94.7%   89.4% 
Accuracy in  98.7 %  90.7% 
Accuracy in LC  78.9%  63.8% 
--------------------------------------------------------------------------------------------------------------------------------- 
*    HC - High Confidence Region 
**  LC - Low Confidence Region
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Table 3. The list of m/z peaks used more than 10,000 times in the 2000 L10O process, 
where 23 peaks are used in fitting with p<0.001.  
------------------------------------------------------------- 
m/z peaks (Da) Frequency p-value  
------------------ ----------- ---------  
7,934a 30,203 <0.001  
9,149a 26,482 <0.001  
7,984b 25,171 <0.001  
8,296a 24,793 <0.001  
3,897a 23,754 <0.001  
9,720a,c 22,630 <0.001  
7,776a 21,723 0.003  
7,024a,c 21,718 <0.001  
5,074a 20,800 <0.001  
8,446a 20,620 <0.001  
9,656a,c 20,479 <0.001  
6,542a,c 20,219 <0.001  
8,067a,c 20,058 <0.001  
7,692a 19,982 0.004  
6,797a,c 19,587 <0.001  
8,356a,c 19,429 <0.001  
7,054a 19,333 0.010  
6,099a 19,265 0.004  
5,586a 18,103 <0.001  
7,820a,c 17,918 0.359  
6,756a 17,668 <0.001  
9,593a 17,615 <0.001  
7,844a 17,611 0.089  
4,191a 17,387 <0.001  
3,486a 17,290 <0.001  
4,451b 17,041 0.459  
4,079a,c 16,790 0.020  
9,456a 16,767 <0.001  
4,653a 16,674 0.002  
7,195a 15,832 <0.001  
7,885a,c 15,388 <0.001  
8,277b 15,388 <0.001  
6,072b 15,093 <0.001  
3,963b,c 14,434 <0.001  
3,780a 14,139 0.014  
4,291b 13,540 <0.001  
4,102b 13,294 0.001  
4,858b 13,076 0.003  
6,949b,c 12,555 <0.001  
3,280b 11,808 <0.001  
6,991b,c 11,281 0.122  
2,144a 11,110 <0.001  
9,100b 10,578 <0.001  
7,652b 10,159 0.005  
5,457a 10,139 <0.001  
6,914b 10,073 <0.001  
------------------------------------------------------------- 
a – used in fitting; b – not used in fitting; c – reported by Qu et al. (2002) 
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Figure 1. 
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Figure 2 
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Figure 3. 
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